Entropy splitting for antiblocking corners and perfect graphs

نویسندگان

  • Imre Csiszár
  • János Körner
  • László Lovász
  • Katalin Marton
  • Gábor Simonyi
چکیده

We characterize pairs of convex sets A, Bin the k-dimensional space with the property that every probability distribution (p 1 ,. • • , P~<) has a repsesentation p, =a;· b;, a EA, bE B. Minimal pairs with this property are antiblocking pairs of convex corners. This result is closely related to a new entropy concept. The main application is an information theoretic characterization of perfect graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Entropy Splitting Hypergraphs

Hypergraph entropy is an information theoretic functional on a hypergraph with a probability distribution on its vertex set. It is sub-additive with respect to the union of hypergraphs. In case of simple graphs, exact additivity for the entropy of a graph and its complement with respect to every probability distribution on the vertex set gives a characterization of perfect graphs. Here we inves...

متن کامل

Computing the clique number of a-perfect graphs in polynomial time

A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981). This result relies on polyhedral characterizations of perfect graphs involving the stable set polytope of the graph, a linear relaxation defined by clique constraints, and a semi-definite relaxation, the Theta-body of the gr...

متن کامل

On determining the imperfection ratio

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations w.r.t different concepts. Perfect graphs are, e.g., characterized as precisely those graphs G where the stable set polytope STAB(G) coincides with the clique constraint stable set polytope QSTAB(G). For all imperfect graphs STAB(G) ⊂ QSTAB(G) holds and, therefore, it is natural to mea...

متن کامل

An axiomatic duality framework for the theta body and related convex corners

Lovász theta function and the related theta body of graphs have been in the center of the intersection of four research areas: combinatorial optimization, graph theory, information theory, and semidefinite optimization. In this paper, utilizing a modern convex optimization viewpoint, we provide a set of minimal conditions (axioms) under which certain key, desired properties are generalized, inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1990